Reviews of conditions with low event rates Matthew Grainge and Jo Leonardi-Bee Statistical Editors for CSG

Introduction

 CSG reviews frequently have common outcomes (>10%)

- Statisticians recommend using risk ratio
 - Odds ratio over estimates treatment effect

But what about rare outcomes?

- Rare outcomes (<5%)</p>
 - Not a problem if sample size is large enough (>30 participants in total)
- BUT, if sample size is small and rare outcomes, then results can be misleading

What about no outcomes?

- Mathematically, can't estimate Risk Ratio
 - Review Manager cheats by adding 0.5 people to each group with and without the outcomes

	Outcome	No outcome	TOTAL
Intervention	0	8	8
Control	5	8	13
TOTAL	5	16	21

	Outcome	No outcome	TOTAL
Intervention	0.5	8.5	9
Control	5.5	8.5	14
TOTAL	6	17	23

What about confidence intervals?

Misleading confidence intervals

Assumes data is based on a large sample size

What does the handbook say?

- Section 16.9 Rare events (including zero frequencies)
- Many methods of meta-analysis are based on large sample approximations, and are unsuitable when events are rare"
- "The fixed correction (for zero frequencies) ... avoids computational errors [but] it has the undesirable effect of biasing study estimates towards no difference and overestimating variances of study estimates..."

Mycosis fungoides

- Most common type of cutaneous T-cell lymphoma
 - Rare malignant, chronic disease (not fungal infection)
 - Uncontrolled growth of blood cells within the skin
 - Several therapies used to induce clinical remission
- Weberschock et al. Interventions for mycosis fungoides. 2012; Issue 9
 - 14 RCTs (675 participants)
 - Majority of results are based on data from one study per treatment

Intervention: Combination therapy

- Active transfer factor with nitrogen mustard
 Intramuscular injections
- Nitrogen Mustard
 - Topically applied chemotherapy agent
- Comparison: TNM with active transfer factor versus TNM with inactivated transfer factor

Outcome: Clearance

Thestrup-Pedersen 1982

"... differences were seen between the active transfer factor group and the inactivated transfer group for clearance: RR 0.09, 95% CI 0.01 to 1.41, 16 participants, Analysis 1.1"

Review: Interventions for mycosis fungoides

Comparison: 11 Topical nitrogen mustard with active transfer factor versus topical nitrogen mustard with inactivated transfer factor Outcome: 1 Clearance

N.B: Both these statistics assume large sample sizes

Measures of treatment effect section of the review

- "P values for the subtotal RR were calculated with the Fisher test in order to avoid spurious (non-) significance in studies with small sample sizes or low numbers of events"
- Data: 0/8 v. 5/8
- P=0.03 (from Fisher's Exact test)

Is the treatment effective?

P values

- From RevMan < 0.00001
- From Fisher's Exact test=0.03
- Both significant
- Measure of effect and confidence intervals
 - Risk Ratio = 0.09
 - 95% Confidence Interval 0.01 to 1.41
 - Not significant

So was this a fluke?

Included study	Outcome of interest	Event rate	RR (95% CI)	Fisher's p-value
Duvic (2001)	Rash	6/29 vs. 1/35	7.24 (0.92, 56.8)	0.04
Wolf (1985)	Fever	5/9 v. 0/9	11.0 (0.70,173.7)	0.03
Stadler (1998)	Adverse events	9/42 v. 2/40	4.29 (0.99,18.6)	0.049
Child (2004)	Improvement	0/8 v. 7/8	0.07 (0.00,1.00)	0.002

Is this phenomena seen in other CSG reviews?

Method 1: Survey of Skin Group full reviews

- Random sample of 20 skin group reviews published in the Cochrane Library
- Research question: What percent of analyses (Forest plots) are based on?
 - A single study
 - Denominator < 30
 - \circ No. of events < 10

Survey of Skin Group Reviews

	No. of Forest plots	No. based on 1 study	Denominator* <30	No. with <10 events
All	742	603 (81.3)	56	88
reviews	(0-298)	(0 -267)	(0 - 12)	(0 - 22)
All reviews	444	336 (75.7)	56	66
minus #5	(0-123)	(0 - 71)	(0 - 12)	(0- 18)

* Number of randomised patients in both groups combined

So have small no. comparisons influenced overall findings?

 20 reviews, 14 contained comparisons with small numbers

<u>Results reported in abstract:</u> 4 reviews reported data based on a single comparison with small numbers

Implications for practice: 2 occasions where implications for practice were influenced by small no. comparisons

Method 2: Email to Statistical Methods Group List

"My query relates to the inconsistency in approaches used to generate the results, where the author is reporting both an exact (Fisher's) p value and asymptotic based 95% confidence intervals for risk ratios from Rev Man. The issue is the discrepancy in the interpretation between the p value (which is less than 0.05) and the confidence intervals (which crosses 1)"

Responses

- Suggested formulae for confidence intervals which work well with small numbers
 - Robert Newcombe's Excel worksheet
 - Miettinen-Nurminen formula
- Philosophical suggestions
 - Should use odds ratios instead of risk ratios if concordance between confidence intervals and pvalues is required
 - Warned against of over interpreting borderline results (i.e. where P is close to 0.05)

Comparison of two formulae for Mycosis fungoides review

	Event rates	Ρ	Mantel-Haenszel	Miettinen– Nurminen
Thestrup– Pedersen (1982)	0/8 v. 5/8	0.03	0.09 (0.01, 1.41)	0.00 (0.00,0.61)
Duvic (2001)	6/29 v. 1/35	0.04	7.24 (0.92, 56.8)	7.24 (1.22,45.1)
Wolf (1985)	5/9 v. 0/9	0.03	11.0 (0.70,173.7)	NE (1.59, NE)
Stadler (1998)	9/42 v. 2/40	0.049	4.29 (0.99,18.6)	4.29 (1.13, 17.1)
Child (2004)	0/8 v. 7/8	0.002	0.07 (0.00,1.00)	0.00 (0.00, 0.40)

NE – Not estimable

Solution

- Measures of effect and 95% CIs should be used ideally to inform strength of association and
- Where there are results from individual studies based on small numbers of included participants individual studies are presented narratively and a two sided Fisher's exact p value is used to determine statistical significance

Next steps

- Student project
 - How common is this phenomena in other Cochrane reviews?
 - What methods are used to overcome the phenomena?
- Standard sentence to be added to protocol:
 - "Where results are estimated for individual studies with low numbers of outcomes (<10 in total) or where the total sample size is less than 30 participants, we will report the proportion of outcomes in each treatment group together with a p value from a Fisher's Exact test."
- Meta-analyses which contain 2 or more small studies are beyond the scope of this presentation

Questions

