Excluding small studies from a systematic review or metaanalysis

Matthew Grainge (Statistical Editor- CSG)

UNITED KINGDOM · CHINA · MALAYSIA

Question

Is it ever acceptable to exclude studies from a systematic review and meta-analysis solely on the basis of sample size?

Question

Is it ever acceptable to exclude studies from a systematic review **and** meta-analysis solely on the basis of sample size?

Case study 1 – Diagnostic Test Accuracy Review

- A study team wishes to exclude any study that has less than 100 participants at the abstract stage for the following reasons
 - 1. Resources are not available to complete the review within a realistic timeframe given rapid policy developments in the area
 - 2. In very small studies there exists a high possibility of selection bias

Case study 2 – Intervention Review

- A Cochrane Review currently containing 80 trials is due for an update
 - 1. CRG has issued guidelines on how reviews could be kept manageable?
 - 2. One suggestion was to limit review to studies with >40 participants
 - Rationale: reviews could become so unwieldy they will become difficult to understand
 - 3. Argued that smaller studies are often of poor quality

Why we should not exclude studies based on sample size

- 1. How small is small: Where to draw the line?
- 2. Defeats main premise underlying meta-analyses
- 3. Reduces the potential to explore heterogeneity
- 4. May lose information on important sub-groups of patients

The Statisticians point of view!

"Statistician"

"Medical statistician"

"Epidemiologist"

"Biostatistician"

Message to the Cochrane Statistical Methods Group

- Are there occasions where it would be acceptable to exclude studies from a Cochrane review or metaanalysis for the following reasons?
 - 1) Smaller studies are associated with a higher risk of bias
 - 2) For practical reasons

The verdict

Those in favour of excluding small studies

Those against excluding small studies

The verdict

Those in favour of excluding small studies

- Those against excluding small studies
- 26

The verdict

Those in favour of excluding small studies

Those against excluding small studies

25?

1?

Main theme 1: Small study effects

 Publication bias: Small "negative" studies less likely to get published

Main theme 1: Small study effects

- Publication bias: Small "negative" studies less likely to get published
- Problem made worse by fact that in random effects meta-analyses small and large studies weighted equally

Main theme 1: Small study effects

- Many tests available to test for and correct funnel plot asymmetry
 - But need 10 studies to assess funnel plot symmetry
- Other possibilities
 - Analyse only the largest study(s)
 - Cumulative meta-analysis

Dechartes et al. JAMA 2014;312:623-630

 163 meta-analyses of RCTs published in either the Cochrane library or leading medical journals (top 10 in category) between 2008 and 2013

Dechartes et al. 2014

Table 2. Summary of the Average Differences in Treatment Outcomes Between the Meta-ana Expressed as Ratios of Odds Ratios, by Type of Outcome (Subjective vs Objective)

		η	
	(n = 9	Subjective (n = 92 [705 RCTs])	
Alternative Strategy	ROR (95% CI) ^a	P Value	
Single most precise trial	1.13 (1.07-1.19)	<.001	
Meta-analysis restricted to the largest trials ^b	1.08 (1.04-1.13)	<.001	
Limit meta-analysis	1.17 (1.11-1.22)	<.001	
Meta-analysis restricted to trials at low overall risk of bias	0.94 (0.86-1.04)	.23	
Abbreviation: ROR, ratio of odds ratios. ^a An ROR greater than 1 indicates larger treatment outcom meta-analysis of all trials than with the alternative strateg	nes with the gy.	^b The largest trial meta-analysis.	

Dechartes et al. 2014

Table 2. Summary of the All Trials and Each Alternative Strategy, Expressed as Ratios of Od

/sis Outcome				
	Objective (n = 71 [535 RCTs])			
Alternative Strategy	ROR (95% CI) ^a	P Value	ľ² (%)	
Single most precise trial	1.03 (1.01-1.05)	.002	0	
Meta-analysis restricted to	1.03 (1.00-1.06)	.044	0	
Limit meta-analysis	1.13 (0.82-1.55)	.46	96	
Meta-analysis restricted to of bias	1.03 (1.00-1.06)	.048	23	

Abbreviation: ROR, ratio of (ed as those in quarter 4 of sample size within each

^a An ROR greater than 1 indie meta-analysis of all trials th Main theme 2: The relationship between study size and study quality

- Second reason why including small studies could inflate the magnitude of an odds ratio
- Advice is to restrict meta-analyses to studies with low risk of bias in a sensitivity analyses

 Only 11% of systematic reviews do so!
- But can sample size be used as a surrogate for assessing risk of bias?
 - **o 3** respondents favoured keeping these separate

Main theme 3: practicality

- 1 respondent involved in review where <50 people per treatment group excluded
 - IPD review (time and effort)
 - Rare outcome so small trials will contribute little information
 - Overhead in negotiating collaboration, etc.
 - Small studies have less impact in meta-analysis

Summary

- Beware fixation with sample size: determinants of precision
 - Sample size
 - Outcome frequency
 - Exposure distribution (or allocation ratio)
 - Covariate adjustment
- Consider exclusion of small studies in sensitivity analyses as well as those with high RoB (but keep concepts separate)

Future Research

- Relationship between study size and study quality
- Explore scenarios where small study exclusions could be feasible
 - e.g. rapid reviews (Turner et al. PLoS One 8(3):e59202)

"Cochrane Statistician"

"Clinical trialist"

"Evidence based medicine guru"